COULOSCOPE® CMS and COULOSCOPE® CMS STEP.

Simultaneous Measurement of Coating Thickness and Electrochemical Potentials according to the Coulometric Method.

COULOSCOPE® Test Instruments.

The COULOSCOPE[®] instrument series operates according to the coulometric method by deplating according to EN ISO 2177 and impresses with its unique design and capabilities. The appealing design, the big LCD display and the clearly arranged keyboard – these are the prominent external features of the COULO-SCOPE[®] series. Just as important, however, is their simple operation, based on the menu-driven operator prompting. This allows for problem-free and quick setting of the instruments to new measurement applications. Approx. 100 predefined applications, from single coatings like such as zinc on steel up to triple coatings like chromium on nickel on copper on plastic are at your disposal.

COULOSCOPE® CMS

It is the ideal instrument for measuring the thickness of virtually any metallic coating on metallic or nonmetallic substrates, especially also of multiple coatings, if non-destructive methods cannot or need not to be used.

COULOSCOPE® CMS STEP

In addition to the coating thickness measurement corresponding to the COULOSCOPE® CMS, the COULO-SCOPE® CMS STEP provides functions for the STEP test measurement according to ASTM B764 - 94 and DIN 50022. The COULOSCOPE® CMS STEP is ideally suited to measure in a simple standard-conforming manner the individual coating thicknesses and the potential differences of multiple nickel coatings.

Example for a measurement system with COULOSCOPE® CMS instrument and measurement stand V24

Coulometric Coating Thickness Measurement (EN ISO 2177).

Measurement principle

The instrument series utilizes the coulometric method according to EN ISO 2177. The metallic coating is removed from its metallic or non-metallic substrate by the passage of electric current under controlled conditions – in fact, the reverse of the electroplating process. The electric current applied is directly proportional to the metal mass to be deplated. The result is a clear correlation between deplating time and coating thickness, provided the deplating current and the deplating area remain constant.

$$th = \frac{e\ddot{A} \cdot I \cdot \gamma \cdot t}{A \cdot \rho}$$

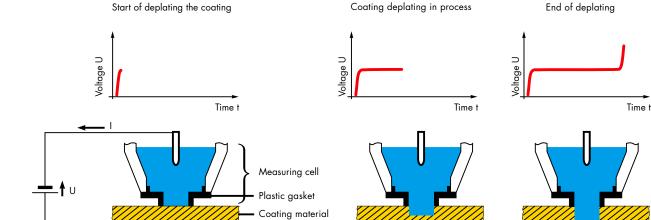
th: coating thickness

eÄ: electrochemical equivalency [g/As]

l: deplating current [Å]
 γ: electrolytic efficiency

γ: electrolytic efficiencyt: deplating time [s]

A: deplating area [cm²]


ρ: density of the deplating coating material [g/cm³]

A measuring cell – comparable to an electrolytic miniature bath – is used to deplate the coating. The measurement area is defined by a plastic gasket placed on the cell. The electrolytes used for the electrolysis are formulated for the various coating materials so that deplating occurs only when an electric current is applied. The deplating process is controlled by the electronics of the COULOSCOPE[®] instrument. A pump moves liquid electrolyte in the measuring cell allowing fresh electrolyte to be present at the deplating area.

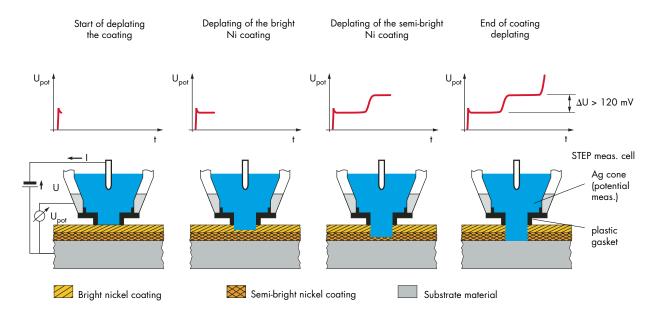
Applications

The coulometric method is one of the simplest methods for coating thickness measurement. It is suited for both production monitoring in the electroplating industry and incoming inspection on finished parts. With a relatively small investment, many coatings that occur in typical applications can be measured. Aside from the X-ray fluorescence method, the coulometric method is the only other method for fast coating thickness measurement for multi-coating systems such as Cr/ Ni/Cu on steel or plastic substrates (ABS). Of course, single and dual coatings, such as zinc on steel or tin on nickel on silver can be measured with the COULO-SCOPE® series without problems as well.

The COULOSCOPE[®] instrument series guarantee accurate measurements of metallic coatings in the range of $0.05 - 40 \ \mu m \ (0.002 - 1.6 \ mils)$.

Substrate material

Schematic presentation of the coulometric method


Presentation of a potential profile on the display

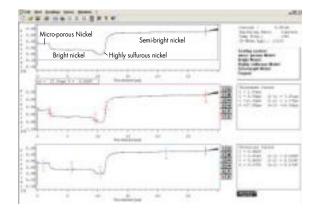
Measurement principle

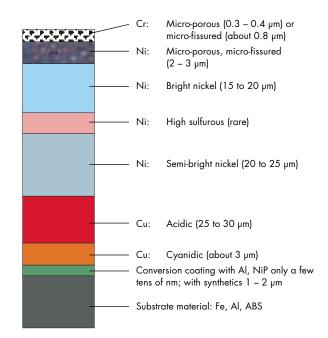
STEP-Test (Simultaneous Thickness and Electrochemical Potential determination) is a measurement method that has been standardized for a long time to determine simultaneously individual coating thicknesses and the electrochemical potential differences between individual coatings of a nickel coating system. The coating thickness measurement is carried out according to the coulometric method as described on page 3. The potential profile is captured using a silver reference electrode coated with AgCl. The potential profile is shown on the display and the individual coating thicknesses and the potential differences can be determned through respective cursor positioning on the plot.

To obtain comparable measurements with the potential measurement method, the reference electrode must always have the same distance from the specimen. This is accomplished using a special measurement cell*. The silver reference electrode is designed as a cone-shaped ring electrode and forms the lower housing component of the measurement cell, where only the necessary measurement cell gasket is placed. This design of the measurement cell ensures a consistently uniform distance between the reference electrode and the specimen.

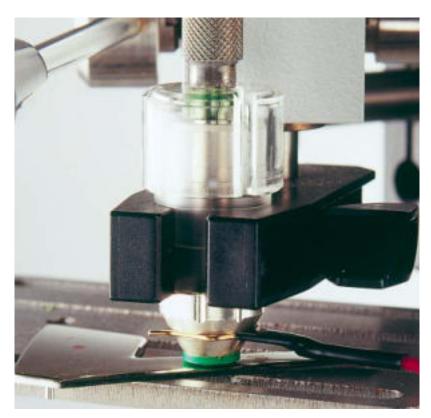
* Property rights applied for

Schematic presentation of the STEP test method shown with the example of duplex nickel coatings


Applications


Quality control of multiple nickel coatings requires measurement devices that can check the thickness and the electrochemical potential immediately following the coating procedure. The COULOSCOPE® CMS STEP measuring system, which due to its simple operation and uncomplicated handling of the reference electrode is suitable for applications in the harsh environment of electroplating plants, has been developed for this purpose. Electrolytic nickel-plating is used for decorative corrosion protection and for improving mechanical surface properties, e.g., hardness. In particular in the automotive industry, nickel-plated components must meet high demands with regard to corrosion behavior. Single nickel coatings are not suited for this purpose. Very complex coating systems are, therefore, being developed, which consist of two, three or even four different nickel coatings as well as additional coatings of chromium or copper.

Evaluation and data storage using STEP-View


The PC software program STEP-View is available to save and conveniently evaluate the measured potential plots. It is shipped as part of the standard equipment of the COULOSCOPE® CMS STEP. However, evaluations can be carried out also directly at the instrument.

In the STEP-View program, the measured potential profile can be read from the instrument with a click of the mouse button. The determination of the coating thicknesses and of the potential differences occurs in two separate diagrams. The interesting values can be determined easily by positioning up to 5 markers at the relevant sections of the plot. The data can be exported to an Excel spreadsheet, the plots can be saved in popular graphic formats and extensive printform templates can be set up.

Basic structure of a coating system with 4 nickel coatings

STEP measuring cell V24/V26 STEP measuring stand V24

General features

- Large size display of measurement values
- Simple choice of deplating rate and test area size
- Available test area sizes: ø 3.2 (128), 2.2 (88) and 1.5 (60) mm (mils). 0.6 mm (24 mils) additional for stand V18
- Deplating rate adjustable between 0.1 and 50 µm/min
- Stand V18: controlled filling and emptying of the cell by means of a pump. Multiple measurements with one cell filling and warning when the electrolyte becomes saturated
- Graphical display of the cell voltage on the LCD screen
- Zoom function to magnify interesting plot sections
- Interfaces for PC and printer connection
- Output for analog chart recorder for the cell voltage
- Selectable measurement units: µm or mils
- Selectable languages: German, English, French, Italian, Spanish
- Storage of all application parameters when switching off the instrument

Special features of version COULOSCOPE® CMS

- Evaluation of measurement data in table or graphic format
- Storage measurement data when switching off the instrument
- Automatic or manual measurement switch-off

Special features of version COULOSCOPE® CMS STEP

- Adjustable deplating amperage
- Determination of the coating thicknesses and potential differences using the cursor
- Automatic measurement sequence for conditioning the silver reference electrode (generation of the required AgCl coating)
- Manual measurement switch-off

System overview

To build a functioning measurement system, the COU-LOSCOPE® CMS or COULOSCOPE® CMS STEP requires a measurement stand with attached measuring cell (STEP measuring cell).

Different measurement stand models including measurement cells are available for the various measurement applications.

Corr.fact: 1.00	5.0 PM/Min COAT-
1 F6+ 1	um nblk# 5 ENTE
+N1 preen	1.9 n2 = 1 1.9 n3 = 8
Fe.Ni.Al. Cu. Iso Blk Appl 4:Cr/Ni/Cu/	

COULOSCOPE® CMS

Example of a measurement screen for a triple coating measurement application. The left half of the display features the measurement application in a graphical format with information regarding coating and substrate material, required electrolyte and color code of the plastic cell gasket to be used

MINTER 180	m Muster Box	el - Winda	or, CL. HAN	ART NO.
Deliver no.: Deliver:			Fax: 0987	
Article: Article no.:	Flate XVE-000			
Date of prod.: Instrument:	06.12.1994 COULOBCOPS		Time: Operator:	
Mean value: Standard deviatio			of blocks:	10
Range :	0.5		m value: m value:	14.94
Values « LUL:				
Values > USL:				

COULOSCOPE[®] CMS: Example of a user specific printform

V18

V26

V27

PC

to evaluate and store data and to create custom printform templates.

Printer to document the measurement results.

Measurement Applications.

Standard features of the COULOSCOPE® instruments:

- 73 stored standard measurement applications for most metal coatings
- 14 stored standard measurement applications for coating thickness measurements on wires
- 2 stored standard measurement applications for STEP-Test measurements (only for instrument model CMS STEP).

If a standard measurement application is not available for your particular material combination, a special measurement application can be defined that is specifically adapted to your particular situation.

Calibration

During calibration, a correction factor (calibration factor) is determined. This correction factor may be required due to production tolerances in the cell gasket diameter, and to variations in coating material density or alloy composition of the coating material. For STEP-Test measurements a factor can be entered.

Applications

Applications are areas of memories where measurement application specific parameters (such as standard or special measurement application, calibration factor, unit of measurement, etc.) and the measurement data are stored. Applications can be copied, edited and deleted.

Standard measurement applications and electrolytes

A total of 89 standard measurement applications are available for various applications. The following table lists a selection of possible measurement applications. For multi-coating systems, the respective coating underneath the coating to be measured is considered the substrate material.

		Smallest measurable coating thickness in µm (µ")								Largest	
Coating materials	Substrate materials	0.015 (0.6)	0.03 (1.2)	0.07 (2.8)	0.15 (6)	0.3 (12)	0.7 (28)	1.5 (60)	3 (120)	7 (280)	measurable coating
		Deplating rate [µm/min]								thickness	
		0.10	0.20	0.50	1.00	2.00	5.00	10.0	20.0	50.0	µm [mils]
Ag	Fe, Ni, Al, non-metals					F4	F4	F4	F4	F4	
					F8	F8	F8				50 (2)
	Cu							F18	F18	F18	
	Cu, Ms				F17	F17					5 (0.2)
-	Fe, Ni, Al, non-metals	F1	F1	F1	F1	F1	F1	F1	F1		50.10)
Cr	Cu, Ms	F9	F9	F9	F9	F9	F9	F9	F9		50 (2)
6	Fe, Ni, Al, non-metals				F4	F4	F4	F4	F4		50 (2)
Cu	Ms, Zn, Zn die casting					F5	F5				10 (0.4)
Ms	Fe		F4	F4	F4	F4	F4	F4	F4		50 (2)
Ni	Fe, Al, Cu, Ms, non-metals					F6	F6	F6	F6		50 (2)
Ni-Fe	Fe, Cu, Ms, Zn, Sn						F6	F6	F6		
Ni electroless	Fe, Al					F7	F7	F7			
Pb	Fe, Cu								F4		50 (2)
Sn	Al				F1	F1	F1	F1	F1		50 (2)
					F9	F9	F9				
	Fe, Ni, Cu, Ms, non-metals						F12	F12	F12		1
Sn ₆₀ Pb ₄₀	Fe, Ni, Al, Cu, Ms, non-metals				F4	F4	F4	F4	F4		50 (2)
	Cu, Ms					F10	F10	F10	F10		50 (2)
Zn	Fe, Ni, Al					F11	F11	F11	F11		
		Wire m	neasuren	nent ove	rview to	ible					
Ag	Cu wire					F8					4 (0.16)
Cu	Fe-, Ni wire		F4	F4	F4						2 (0.08)
Ms	Fe wire				F4						2 (0.08)
Ni	Fe wire					F6	F6				10 (0.4)
Sn	Cu wire					F12	F12				10 (0.4)
Sn ₆₀ Pb ₄₀	Cu wire				F4	F4	F4	F4			20 (0.8)
Zn	Fe wire						F11				10 (0.4)
		STEP-Test	measur	ement o	verview	table					
Multiple nickel c	oating system as shown in the figure	on page	e 5				F22		F22		40 (1.6) coating

Technical Data.

Instrument

Supply voltage: 230 or 115 V AC +10 %, -15 %; 50 ... 60 Hz; depending on model Power consumption: Max. 85 VA (230 V +10 %) Dimensions: 350 mm x 140 mm x 200 mm (H x W x D) 13³/₄" x 5¹/₂" x 8" Mass: 6 kg / 13 lbs Operating temperature: +10° ... +40°C / +50° ... +104°F Display: LCD-graphics display, 126 mm x 70 mm 5" x 2 ³/₄" Measurement methods: Coulometric method according to EN ISO 2177 and ASTM B504 STEP-Test-method according to ASTM B764 - 94 and DIN 50022 Available memory: Max. 3000 measurements in 600 blocks can be distributed over a maximum of 50 applications (memories) Evaluation (not CMS STEP): Statistical: mean value, standard deviation, coefficient of variation, range, lowest and highest measurement Graphical evaluation: histogram (30 measurements minimum), normal probability chart, SPC control chart with control limits, specification limits, process capability indices, expected value \hat{s} of the standard deviation (σ) and stand-

ard deviation of the blocks s_a

Measurement stand connector:
25-pin MinD socket, connector to measurement stand (V18, V24, V26 and V27)
Analog outputs:
2 banana jacks, maximum voltage range
0 ... -18 V, recorder input impedance > 2 kΩ
RS232:
9-pin MinD socket, data format is selectable
Printer port:
25-pin MinD socket, CENTRONICS parallel port
Auxiliary silver electrode connector (only CMS STEP): 1 banana jack

STEP-View hardware requirements

Operating system: Windows® 95 to XP Processor: 500 MHz minimum Random access memory: 128 kB minimum CD-ROM drive Mouse (bus or serial) PC keyboard 1 free serial port (Com1 ... 4) Monitor with a minimum resolution of 800 x 600 pixel

Optional Accessories.

An extensive selection of accessories for measuring, for storing the instruments and for the positioning of test specimens is available.

Measurement stand V18 with an assortment of specimen support arms, ball jointed specimen support with freely movable support plate. A measuring cell support stand, also capable of holding three 100 ml laboratory bottles, is available

Measurement stands

	V18		V24			V26	V27
Dimensions (H x W x D) [mm (inch)]	500 700 x 320 x 545 (20 28 x 12.8 x 21.8)		330 x 220 x 270 (13.2 x 8.8 x 10.8)				
Mass [kg (lbs)]	17 (17.5)		6.6 (14.6)		5.6 (12.3)		1.2 (2.6)
Operating temperature							
Largest height of the specimen [mm (inch)]	210 (8.4)	210 (8.4) 80 (3.2)			130 (5.2)		-
Wire diameter [mm (inch)]	-			-	-		0,1 4 (4 160)
Maximum wire immersion depth [mm (inch)]	-		-		-		40 (1.6)
Measurement area	Measure	Measurement area defination by plastic gaskets with different hole diameters					
Nominal diameter of the plastic gasket [mm (inch)]	for V18 only 0.6 (24)	3.2	applie 2 (128)	es for V18, 2.2 (88			
Gasket color code	red		blue	green	yellow		_
Minimal curvature radius where measurements are possible [mm (inch)]	1 (40)	15	5 (600) 5 (200)))	2 (80)	

Vice for clamping test specimen; also suitable for mounting on the support plate of measurement stand V18 and V24

Description	Part no.
COULOSCOPE® CMS, standard content of shipment: meas. instrument, replacement fuses, protective cover, power cord (2 m, (6' 8")), Operator's Manual.	602-748
COULOSCOPE® CMS STEP, standard content of shipment: measuring instrument, replacement fuses, protective cover, power cord (2 m, (6' 8")), operator's manual, RS232 interface cable CMS STEP – PC (2 m, (6' 8")), measuring cell STEP, connecting cable CMS STEP – measuring cell STEP (0.8 m (2' 6")), conditioning plate STEP, software program STEP-View for data storage and evaluation, storage container for the STEP measuring cell.	603-540
Measurement stand V18 , standard content of shipment: measurement stand, support arm with swiveling support plate, accessory case with special eraser, replacement electrode, round brush, plastic cell gaskets 3.2 mm (128 mils), 2.2 mm (88 mils) and 1.5 mm (60 mils), measuring cell replacement gaskets, circular level, grounding cable and centering device, measuring cell type 15/32, 3 plastic bottles of 1 l and 3 electrolyte bottles of 100 ml each, connecting cable V18 - instrument (2 m, (6' 8")).	600-781
Measurement stand V24 , standard content of shipment: measurement stand, accessory case with special eraser, replacement elec- trode, wire brush, plastic gaskets 3.2 mm (128 mils), 2.2 mm (88 mils) and 1.5 mm (60 mils), blind gaskets, circular level, ground cable, measuring cell and 3 mm right angle hex key, transfer pipette, burette, 3 plastic bottles of 100 ml, 1 wash bottle and 1 plas- tic beaker, protective cover, cable V24 - instrument (2 m, (6' 8")).	600-782
Measurement stand V26, standard content of shipment: measurement stand, accessory case with special eraser, replacement elec- trode, wire brush, plastic gaskets 3.2 mm (128 mils), 2.2 mm (88 mils) and 1.5 mm (60 mils), blind gaskets, circular level, ground cable, measuring cell and 3 mm right angle hex key, transfer pipette, burette, 3 plastic bottles of 100 ml, 1 wash bottle and 1 plas- tic beaker, protective cover, cable V26 - instrument (2 m, (6' 8")).	600-783
Measurement stand V27, standard content of shipment: measurement stand, stainless steel beaker, lid for beaker, accessory case with stirrer bar, special eraser, connecting cable V27 - instrument (2 m, (6' 8"))	600-784

Optional accessories

Description	Part no.	Description
Cable V24/14 + V26/16-CMS (2 m, (6' 8"))	602-829	Measurement stand V18
Cable V17-CMS 230 V (2 m, (6' 8"))	602-861	Measuring cell storage bracket
RS232 interface cable (2 m, (6′8″))	602-220	Measuring cell type 06
Vice with mounting bolts	600-800	Plastic gasket Ø 0.6 mm
Chromate activator	602-838	Measuring cell type 15/32
Cable V27-S8/S9	604-165	Support arm for bearing shells
special for COULOSCOPE® CMS STEP		Support arm for magnetic holder
Aeasuring cell STEP V24/V26	603-546	Ball-jointed specimen support
Neasuring cell STEP V18	603-545	Measurement stand V24/V26
Conditioning plate STEP	603-610	Bottle holder
Connecting cable CMS STEP – measuring cell STEP	603-549	Magnetic holder
		Special measuring cell with integ

Description	Part no.
Measurement stand V18	
Measuring cell storage bracket	602-843
Measuring cell type 06	602-837
Plastic gasket Ø 0.6 mm	600-801
Measuring cell type 15/32	602-833
Support arm for bearing shells	602-839
Support arm for magnetic holder	602-841
Ball-jointed specimen support	602-840
Measurement stand V24/V26	
Bottle holder	600-802
Magnetic holder	600-854
Special measuring cell with integrated electrode	600-790

Coating	Substrate	Electrolyte (VE 1I)	Part no.	Calibration standard	Part no.
Cr	Fe, Ni, Al, non-metals	F1	600-820	Cr/Fe	600-836
Sn	Al	F1	600-820	Sn/Al	600-846
Ag	Fe, Ni, Al, non-metals	F4	600-822	Ag/Fe	600-847
brass	Fe	F4	600-822	On request	
Cu	Fe, Ni, Al, non-metals	F4	600-822	Cu/Fe	600-838
Sn ₆₀ Pb ₄₀	Fe, Ni, Cu, Ms, non-metals	F4	600-822	Sn ₆₀ Pb ₄₀ /Fe	600-848
Pb	Fe, Cu	F4	600-822	Pb/Fe	600-849
Cu	Ms, Zn, Zn die casting	F5	600-827	Cu/Ms	600-843
Ni	Fe, Al, Cu, Ms, non-metals	F6	600-823	Ni/Cu	600-839
Ni-Fe	Fe, Cu, Ms, Zn, Sn	F6	600-823	On request	
Ni electroless	Fe, Al	F7	600-828	On request	
Ag	Cu	F8	600-824	Ag/Cu	600-840
Cr	Cu, Ms	F9	600-825	Cr/Ms	600-845
Sn	Fe, Ni, Cu, Ms, non-metals	F9	600-825	Sn/Ni	600-841
Zn	Cu, Ms	F10	600-826	Zn/Ms	600-842
Zn	Fe, Ni, Al	F11	600-829	Zn/Fe	600-844
Sn	Fe, Ni, Cu, Ms, non-metals	F12	600-830	Sn/Ni	600-841
Ag	Cu, Ms	F17	600-833	Ag/Cu	600-840
Ag	Cu	F18	600-834	Ag/Cu	600-850
Multiple Ni coat	. system as shown in fig. on page 5	F22	603-547	STEP/Cu	603-548

Active Around the World.

Helmut Fischer GmbH Institut für Elektronik und Messtechnik in Sindelfingen/Germany is an innovative leader in the field of coating thickness measurement, material analysis, microhardness testing, electrical conductivity- and ferrite content measurement as well as for density and porosity testing. The company is able to recommend the best solution for any application. A comprehensive range of products is offered using X-ray fluorescence; Beta-backscatter; Magnetic; Magnetic induction; Electric resistance; Eddy current and Coulometric techniques.

FISCHERSCOPE® X-RAY XDAL® for coating thickness measurement and quantitative material analysis

FISCHERSCOPE® MMS® PC, universal measuring system for magnetic, magnetic inductive, Eddy current and Beta backscatter method coating thickness measurement and general test procedures of materials

Helmut Fischer has 13 subsidiary companies and 32 marketing agencies strategically located around the globe.

The high quality standard of Fischer instruments is the result of our efforts to provide the very best instrumentation to our customers. Fischer is a reliable and competent partner, offering expert advice, extensive service, and training seminars. Today, Fischer instruments are used successfully in all technological fields of industry and research.

The information in this brochure contains only general descriptions and performance features that do not always apply as written, or that may be changed due to continuous development of the products. The desired performance features are binding only if they are expressly agreed upon in the contract.

COULOSCOPE®, FISCHERSCOPE® and MMS® are registered trademarks of Helmut Fischer GmbH Institut für Elektronik und Messtechnik, Sindelfingen/Germany.

Helmut Fischer GmbH Institut für Elektronik und Messtechnik, 71069 Sindelfingen, Germany, Tel. +49 (0) 70 31 / 3 03 · 0, mail@helmut-fischer.de Fischer Instrumentation (G.B.) Ltd., Lymington/Hampshire SO41 8JD, England, Tel. +44 (0) 15 90 68 41 00, mail@fischergb.co.uk Fischer Technology, Inc., Windsor, CT 06095, USA, Tel. +1 86 06 83 · 07 81, info@fischer-technology.com

Sole Agent for Helmut Fischer GmbH Institut für Elektronik und Messtechnik, Germany: Helmut Fischer AG, CH-6331 Hünenberg, Switzerland, Tel. +41 (0) 41 785 08 00, switzerland@helmutfischer.com Branch Offices of Helmut Fischer AG, Switzerland: Fischer Instrumentation Electronique, 78180 Montigny le Bretonneux, France, Tel. +33 1 30 58 00 58, france@helmutfischer.com Helmut Fischer S.R.L., Tecnica di Misura, 20128 Milano, Italy, Tel. +39 0 22 55 26 26, italy@helmutfischer.com Fischer Instruments, S.A., 08018 Barcelona, Spain, Tel. +34 9 33 09 79 16, spain@helmutfischer.com Helmut Fischer Meettechniek B.V., 5627 GB Eindhoven, The Netherlands, Tel. +31 4 02 48 22 55, netherlands@helmutfischer.com Fischer Instruments K.K., Saitama-ken 340-0012, Japan, Tel. +81 4 89 29 34 55, japan@helmutfischer.com Fischer Instrumentation (Far East) Ltd., Kwai Chung, N.T., Hong Kong, Tel. +65 22 4 20 11 00, hongkong@helmutfischer.com Fischer Instrumentation (S) Pte Ltd., Singapore 118529, Singapore, Tel. +65 21 65 57 4 55, china@helmutfischer.com Fischer Instrumentation Ltd., Shanghai 200437, P.R.C., China, Tel. +82 1 62 1 65 55 74 55, china@helmutfischer.com Fischer Instrumentation Electronolud, Shanghai 200437, P.R.C., China, Tel. +91 20 26 82 20 65, india@helmutfischer.com

www.helmut-fischer.com

