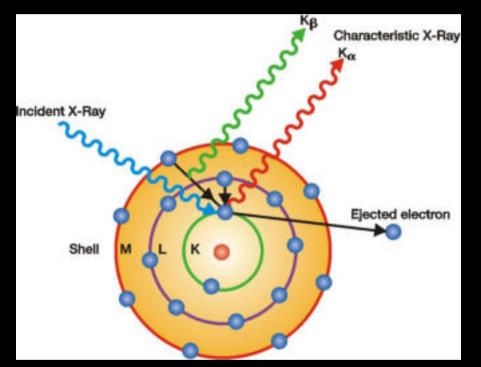
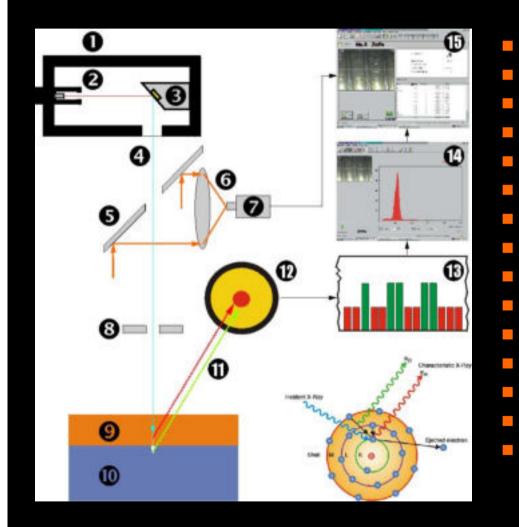
#### **ACI-LeadFree Soldering Summit**


SnPb Solder Analysis by X-ray fluorescence Spectroscopy

> Michael Haller Fischer Technology, Inc.

July 12-13th Philadelphia/PA




## X-Ray fluorescence process



- Incident X-ray Beam strikes sample
- Excitation of characteristic Xray Fluorescence (photoelectric effect)
- Element Specific characteristic radiation is detected
- Software evaluates Spectrum
- Non-destructive and quick

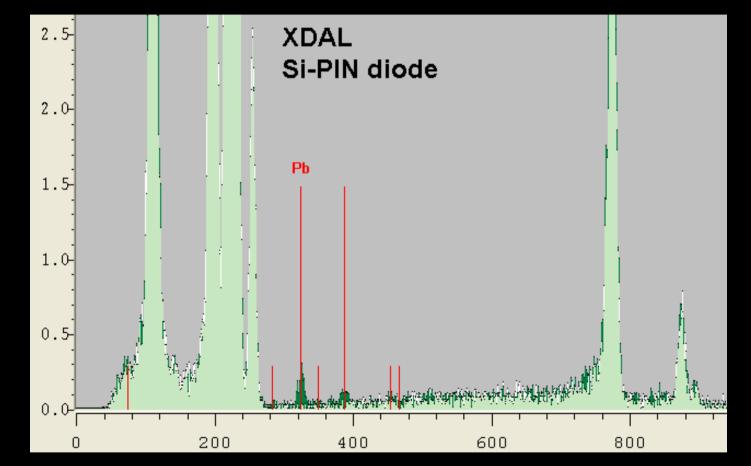


### Hardware Configuration



- I. X-ray tube
- 2. Cathode
- 3. Anode
- 4. Primary Beam
- 5. Camera Mirror
- 6. Camera Optic
- 7. Video Camer
- 8. Collimator
- 9. Sample Top Layer
- 10. Sample Substarte
- II. Fluorescence Radiation
- 12. Detector
- I3. Countrate
- 14. Spectrum
- 15. Measurement Results




## Fischerscope® X-Ray XDAL / XAN







### Pb – detection



- 4 μm Sn coating contaminated with 0.4% Pb on FeNi
- Detection limits of 0.01% possible



# Market Requirements-Regulatory Driven

#### Lead Free

- Directive 2002/95/EC (Final 27 January 2003)
  - Restriction of the use of Hazardous Substances in electrical and electronic equipment

#### - Directive 2002/96/EC (Final 27 January 2003)

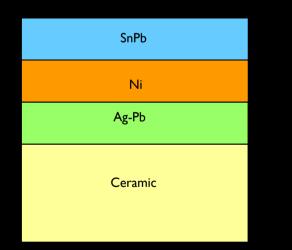
- Waste Electrical and Electronic Equipment
  - Prohibits certain materials in landfills, forces recycling

#### - Directive 2000/53/EC (Final 18 September 2000)

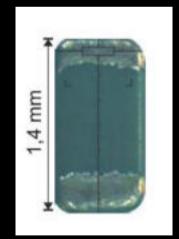
- End of Life Vehicles
  - Mostly affects Automobiles, but includes language on automotive electronics



# Market Requirements - Reliability Driven

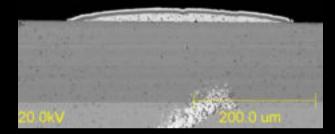

- Avoiding Lead Free Minimum of 3 % Pb to reduce risk of Sn – Whiskering
- End users demand "not pure tin finishes"
  - Specifications
    - Boeing BQA-96-03
      - Requirements for Soldered/Plated Electrical, Electronic Assemblies/Harness/Cables/Components and Mechanical Items
    - Defense Supply Center Columbus
      - MIL-PRF-38534
        - » General performance requirements for hybrid microcircuits, Multi-Chip Modules (MCM)

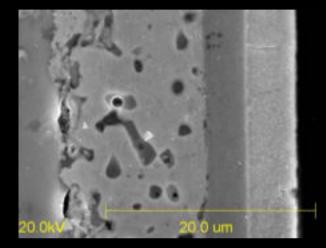



# Typical Sample

#### Multi-Layered Chip Capacitor

- Various Solder alloys
- Ni or Cu Barrier Layers
- Various metallization alloys
- Ceramic material with many doping elements





- SnPb Solder Terminations
- Ni-Barrier Layer on Terminations
- Ag-Pb-metallization layers
- Ceramic materials



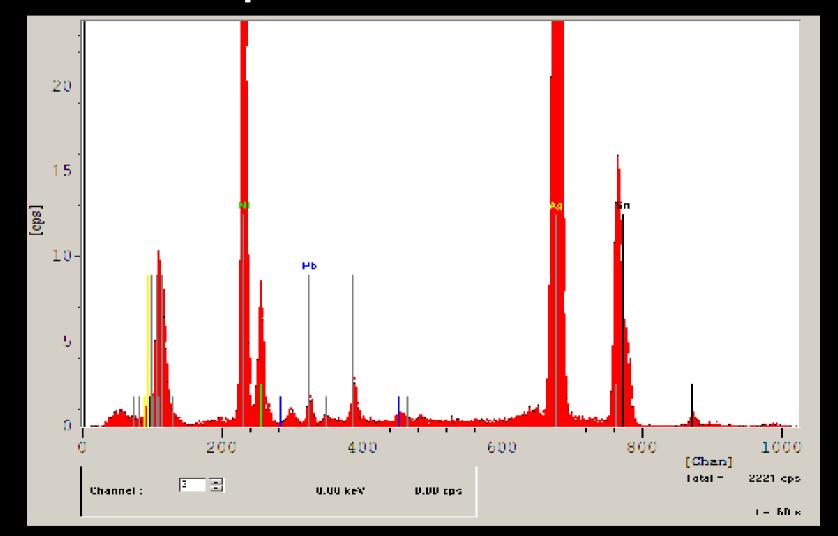


# Typical Sample - MLCC's





- MLCC 'S (MultiLayerCeramicCapacitors)
  - Ceramic Base Material
    - Contains many elements Pb,BiAg.
  - Ag in Solder and Paste/Frit
- Application needs to be treated as a layered system
- Any other setup will yield wrong results with potential wrong classification of parts
  - Pure Sn- treated as containing > 3% Pb, Bi, Ag




# High Reliability Industry View

- Mil/Aero not required to change by RoHS, but very much affected due to component termination change to 100% Tin
- Tin Whiskers are a real threat to high reliability electronics
- Mitigation of 100% Tin after it sneaks in is far too expensive.
  Costs will increase, need to be passed on to customers
- Can keep SnPb by working with suppliers and by adding the right equipment
- Flow down requirements to manage 100% Tin are coming soon.
- Can be turned into a competitive advantage



## XRF Spectrum of a MLCC





### Measurement Results

| <b>Application</b>   | <u>SnPb[µ"]</u> | <u>Sn [%]</u> | <u>Pb [%]</u> | <u>Ni [µ"]</u> | <u>AgPb[µ'']</u> | <u>Ag [%]</u> | <u>Pb [%]</u> |
|----------------------|-----------------|---------------|---------------|----------------|------------------|---------------|---------------|
| SnPb/Ni/Ag/Ceramic   | 97.1 ± 1.52     | 94.5 ± 0.18   | 5.48± 0.18    | 68.2±1.1       | 3 3±  .4         |               |               |
| SnPb/Ni/AgPb/Ceramic | 74.0 ± 1.43     | 100.00±0.02   | -0.02± 0.02   | 53.5±0.34      | 1300±18.5        | 98.3±0.05     | 1.74±0.05     |
|                      |                 | Sn I[%]       | Pb 1[%]       | Ni I[%]        |                  | Ag I [%]      |               |
| SnPbNiAg             |                 | 12.8±0.17     | 1.61±0.05     | 22.3±0.07      |                  | 63.3±0.20     |               |

#### 3 Different Applications

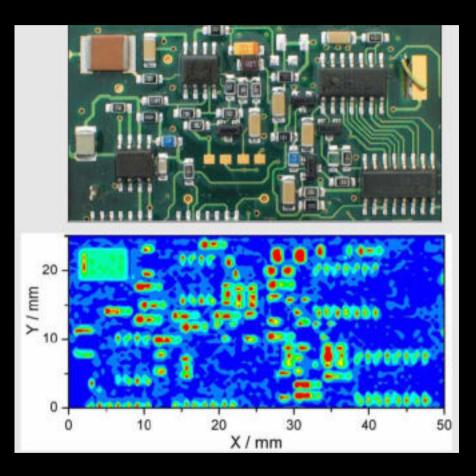
- Ignoring Pb in Ag-paste/Ceramic
- Define Pb in Ag-paste/Ceramic
- Ignore layered structure of MLCC- measured as bulk



### Measurement Results

- Importance of taking layered structure into account
- Significant differences for different applications
  Pure Sn finishes could pass as containing > 3% Pb, Ag etc
- Bulk analysis not possible for layered samples




## Automatic Product Search

|                        |           | Product | class: MLCCA | vcl    |        | 2               |
|------------------------|-----------|---------|--------------|--------|--------|-----------------|
| Name                   | mq (b     | No.     | Directory    |        | Date   | Measuring mode  |
| SnPb/Ni/AgPb/Ceramic   | 1.518     | 5       | Fischer      |        | 6/23/2 | deeddee         |
| SnPb/Ni/AgPdPb/Ceramic | 1.528     | 2       | Fischer      |        | 6/23/2 | deeddeec        |
| SnPb/Ni/AgPd/Ceramic   | 1.632     | 1       | Fischer      |        | 6/20/2 | deeddee         |
| SnPb/Ni/Ag/Ceramic     | 1.643     | 1<br>3  | Fischer      |        | 6/22/2 |                 |
| SnPbNiAg               | 4.127     | 4*      | Fischer      |        | 6/22/2 |                 |
| Au/Pd/Ni/CuFe          | 20.115    | 6       | Fischer      |        | 6/22/2 | dddCc           |
| (                      |           |         |              |        |        | <u>,</u>        |
| Measure and search 60  | Meas. tim | e       |              | Accept | Cance  | el <u>H</u> elp |
|                        |           |         |              |        |        |                 |
|                        |           |         |              |        |        |                 |

R

# Elemental Mapping of PCB-Board

- Scanning Capabilities with programmable XY-Stage
- Determination of Pbpresence
  - Relevant for RoHScompliance





## Conclusion

- Huge concern in high reliability industry looking for a solution
- XRF provides a solution
  - Non-destructive
  - No sample preparation
  - Quick (30-60 s)
  - Scanning capabilities
  - Automated Product identification
- XRF requires layered sample measurement capabilities

